
Prolog lecture 3

Go to:

http://etc.ch/t7Hj

Or scan the
barcode

http://etc.ch/t7Hj

Today's discussion
Videos:

Arithmetic

Backtracking

Q: next time you do questions like "does this
terminate" can you do polls so you can get see when
ppl have thought about it before you talk about it?
thanks

A: here goes...

Which of these are true statements?
2 is 1+1

2 is +(1,1)

1+1 is 1+1

A is 1+1, A = 2

1+1 is A, A = 2

http://etc.ch/t7Hj

Q: What are the advantages of using "is" vs the
clpfd's equality constraint "#="? the second seems
more declarative

A: #= is more complicated. It uses "is" when it can
and does other stuff too. When I learn a language I
like to start with the simple versions and then build
up.

X is 1 + 2. --- X = 3

X #= 1 + 2. --- X = 3

1 is X + 2. --- error: args not instantiated

2 #= X + 2. --- X = 0 (cool!)

4 #= X * X. --- X in 2 \/ -2 (cool!)

(X+2)*(X-4) #= 0. --- _4036+4#=X, X+2#=_4056,_4056*_4036#=0. !!!

#= is a relation over arithmetic equality -> but integer
arithmetic is undecidable.

What does LCO stand for?
Last Call Optimisation

Logical Call Order

Let's Collect Otters

London Chamber Orchestra

http://etc.ch/t7Hj

Could you apply LCO to this?
last([L],L).

last([_|T],L) :- last(T,L).

http://etc.ch/t7Hj

Q: When does LCO get applied? Is it during
compilation, or during execution when the call is
made? (And does that make it partly determined by
the arguments?)

Q: When does LCO get applied? Is it during
compilation, or during execution when the call is
made? (And does that make it partly determined by
the arguments?)

A: Hmm.

When does LCO get applied?
Interpreted Prolog

Easy - it's applied during execution. The interpreter basically avoids allocating
a new stack frame when the predicate is determinate at the point that the last
clause needs to be checked

Compiled Prolog

Depends how you compiled it. But you can tell statically that LCO is
applicable

Does that make it partly determined by the
arguments?

It's not determined by the type of the arguments: there's only one type! (everything
is a term)

It's not determined by the value of the arguments:

think about how the search happens

Prolog would need to try the unification to know if it needs to come back

How would you represent a binary search tree?
I've finished

I need a hint

http://etc.ch/t7Hj

A binary search tree stores
one value per node. The
values in the left subtree are
all less than the node value
and the values in the right
subtree are all more than it.

How would you represent a binary search tree?
One solution:

Represent nodes as a compound term n(L,V,R) where L is the left sub-tree, V
is the value and R is the right sub-tree.

Represent leaves as the atom lf.

Write a predicate that inserts items into your tree
I've finished

I need a hint

http://etc.ch/t7Hj

Implement '='
I've finished

I need a hint

http://etc.ch/t7Hj

